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= (1 - a 2 ) ½ ; 0 ~ arg ~ < iT

Cn 
= (n2 - ci2 ) ½ ; 0 � arg ç <

The arguments of these variables are defined so that the electromagnetic

fields are bounded at infinity. In these expressions IL () (X) represents

the Hankel function of the first kind and of order zero , and n represents

the relative refractive index of region 2 compared to region 1 , defined as

= k~ /k~ = c 2 (l + i ó ) / c
1 

with ~ (loss tangent) given as

and 0 � arg n < ir/4 . Finally, = (~~0
/c

1
)
1 is the intrinsic impedance

of region 1. We note that the first and second terms in (2) are the direct

contributions due to the current filament and its image in reg ion 2, respec-

tively. The integral in (2) and the magnetic potential given in (3) are due

to the finite conductivity of region 2.

With the use of the addition theorem of cylindrical functions , we there-

fore obtain the expression fo’ the electric potential due to a uniform current

distributed on the surface of the j-th wire as

11
U 

= 
4~2k 

cx~ (ik1
az)J

0
(~a~k1

) (
~
2
H°~~Eck 1

((x-h.)
2+ (y - d.)2 ) I ]

c2H
(’) 

[~~k1 
( (x + h.)2 + (y - d . )

2 ) + P [ a ;k
1 (x 

+ h .),k1 (y 
- d.)]

• —Q [c~;k
1

(x + h . ) , k 1 (y — d~)]} (4)

I

where

2 exp(-Xu 1 
- iY A )

P( a ;X ,Y) = i~ J + 
dA (5)

-~~~

2a2 (~ 
exp( -Xu 1 - 

iYA )
Q(a ;X ,Y ) = rr J 

~2 + 
dA (6)
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and X = k
1
x and Y = k 1y ,  are the normalized distances in the x ,y directions.

If now we denote the average axial electric field on the k-th wire due to the

current on the j-th wire as 1
~kj’ 

we obtain from (I) and (4), together with

the addition theorem of Bessel functions ,the following expression :

1
k j  

= T~I’1~. exp (ik
I
az )JO(CA .)JO (r,Ak ) {C 2

~
l 

~
[
~~

( ( I l .
~
u
k
)
2 

+ (D...D
k
)
2
)~ ]

- ~
2H~’~ [~ ((H . + Il k ) 2 

+ ( D .  
~ Dk ) 2

) ]  + P ( a ; I I~ +Hk, Dk - D . )

- Q (ci ;Il . + tt k’ D k - D.)} (7)

where A. = k a., U. =k h ., and D. = k d.. 1t is worth noting that if
j  l j  j  lj  j  l j

j =k , then (7) should be modified by replacing the first Flankel function

term in the curly bracket by H
~
’
~~
RAk)/J (

~
Ak) since the axial electric

field is un i f ormly distributed in this case.

Thus , within the framework of a thin-wire approximation , a modal

equation is found by setting the average axial electric field on the k-th

wire to be equal to the axial surface impedance times the total axial current

on the wire, i.e.,

for k=1 ,2,. . ,m (8)

If now we define

Mkj 
= _4[E

kj /Ij
_Z
j
ôkj J/(k ln l) (9)

so that [MJ i s  a ni x n matrix with element s Hkj. we have from (8) and (9)

the following matrix equation

[M] [I] = 0 ( 10)

where [lJ is the m x I column matrix with elements I .. Thus i n  order for

this to have a non-trivial solution (i.e. some !.xO), the determinant of (MJ

4 must  he zer o, therefore the resulting modal equation i s

M(a) = det [M I 0 (11)

- ~~~~~~~~~~~~~~~~~~~~~~~
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III. PROPAGATION MODES ON A DUAL-LINE

In the special ‘ase of two identical bare wires of equal height (Fl
1 

= H2 ) ,

the modal equation can be factored to obtain two solutions : the monofilar

one where I~ = 12) and the bif ilar one where I~ = .-I~ . The two independen t

modal equations are

0 = M (a ) = ~~~~~~~~~~~~~~~~~~~~~~~ 
_ H~
U(~2H)} + P( a ;2H , D) - Q (a ;2 H , O) }

± J~ (~A) {~
2 [H~’~ (CD) -H~’~~(cR)] +P(ct;2H,D)-Q(a;2H,D) } ( 12 )

where
2 2~~A = A

1 
= A2 , Fl = H

1 
= H2, 0 = 01 - 0 2 1 ,  R = [(2H) + 0 1

We note that the Bessel funct ion J0(~A) is only important in the behavior

• of M(cz) for large 
~ 

. For the purpos e of f ind ing the roots of M (a) ,

the term J0 (~A) may be approximated by unity under the th in  wire assumption

that A << 1.

The method we adopt in this report to find the zeros of M~ (a) is an

• iterative scheme similar to the well-known Newton ’s method . To use th is method

• the derivative of M(a) with respect to a is needed . This is given by

M (a) = {-2a[H (çA)-H~~~(~2H)] + ct~ [AH~
’
~~(~A) -2H~~~R2Fl)J

+P ’(a;2H,O) - Q’(cL;2H,O)

~ (_ 2a(ll~~~(~D) -H~
’
~~(t R)] + [DH~~~~(ID) -RH~~~[~ R ) ]

+ Pta;2H,D) - Q’(a;2H,D ) } (13)

where

2

. • . • • .~~ - • • - “ ~~~~~~~~~~~~~~~~~~~ -~~ - . • - - -r
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. l + X u
P’(a ;X ,Y) = 

~~~ U
1
U

2
(~~1

+u
2
) 

exp( - u
1
X -iAY )dA (14)

2 2 .

2a C 2 a (u 1+n u 2 ) exp(-u 1 X - 1AY
Q’ (ct ;X ,Y) = .j - [2u~ -a  X - 

2 2 dA (15)
u2 (u2 +n u1) u 1(u 2 + n  u 1)

The ( j + 1 ) - t h  approximation to the root is then obtained from the

• previous approximation a. using the equation

= a . — M~ (a.)/M~ (a .), (j �. 0) (16)

where a
0 is an initial guess to the root, and the iteration is stopped when

< c (where c is the desired accuracy of the root). Obviously the

iteration converges only if the initial guess is close enough to the actual

root. The method used in this report to locate the roots is to find one for

a par t icu la r  set of parameters (by t r i a l  and error or from previously known results

and then vary the parameters by small  increments , f inding the root at each step

un t i l  the desired s~ t of parameters is reached . At each step the initial guess

a
0 

is the root of the previous set of parameters .

The integrals P and Q and their  derivat ives as given in ( 5 ) ,  ( 6 ) ,  ( 14 ) ,

and (15) , in principle may he evaluated numerical ly , however it is more

efficient to find approximate expressions initially in order to avoid excessive

computation in the complex a-plane. In the following section , we shal l  di scuss

various approximations valid for different ranges of parameters involved .
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IV . APPROXI MATIONS FOR THE INTEGRALS

• P ( a ;X ,Y) and Q(a ;X ,Y)

Using methods similar to those employed by Olsen and Chang [20], the

• integrals P and Q can be approximated in terms of known functions for

the common case where the wire height above the ground is greater than the

skin-depth of the ground , that is , t i l l H >> 1. The integral P as given

in (5) can be written as

P(a;X ,Y) = - 
j~~~~2, 

(u
1
-u
2

)exp( - u
1
X - iA Y)dA (17)

where

N = (n2 - l)+ ; 0 1 arg N ~ it/4

In most •cases , we expect the useful solutions to the modal equation

M~ (ci) = 0 to be located near a = 1. This means that ?.~ is small so the

integrand of (17) decays as exp (-XIAI) away from the point A = 0. The

major contribution to the integral is then from the region A 0. We

therefore expand u2 in a Taylor series about A = 0  to obtain

• . 2  . 4
u = -i~ + — + —i-— + ... . (18)

n

This series converges only when J A j < k i ,  however the integrand of (17)

will have decayed by the factor exp(_Xkn I) outside these limits. Therefore

an approximation based on the first few terms of (18) appears to be valid for

k~I 2 >> k12 and k~ix >> 1. 8y using the first term of (18), we may

rewrite (17) as

P(a ;X ,Y) = 
2 i [ u 1 + i~ Jexp (-u1X - iA Y)d A

+ 
2 f [-g -u2]

exp (_i
1X-iAY)dA (19)

i7rN .
~~~~

P~ (a ;x ,Y) +
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Neglecting ~ ~~~~~
, we obtain a f i rs t  order approximation to P as

P( a ;X , Y) P0 (ct ;X , Y)

= —~-~ - {[~
2
/~ X 2 

- it,~~/aX] ( [exp(-u 1X - iA Y ) / u
1 ldAu rN

= (2/N 2) {CH~’~ (?R) [i~~X/R + cx
2 
-Y

2 ) /R 3
]

- (c~X
2/R 2)H~’~ (cR) (20)

2 2~~ . .where R = (X + Y ) . In deriving (19) the following identity has been used.

1
= (iii ) J [exp(-u 1X - i A Y ) / u 1]dA (21)

An upper bound for the absolute error in this approximation is found in

Append ix A to be

• 

- 

i < 
4[2+26X+62X2 + ~S

3X3/3] (22)P0 
1TI N~~~IX

where • 
-

10
‘

~

(Re ~~~ (Re ~2 > 0)

From this expression it is apparent that the error is small if

• n3lX
3 >> 8/it and if i~

3 I >> 46~/(3m~) . For example say n=5.3 + i.95

and Re ~ 2 < .04, then the error for h = .1A is less than 9 x and

for h = .5A the error is less than 7 Xl0
5 

. These error estimates are

conservative and as will be shown in a later section, the results obtained

using this approximation are generally much better than what is indicated by

the error bound. For the interested reader, we have also included in

Appendix A higher order approximations and their error estimates.

— 
- - - ., ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ r-
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Following a similar procedure, we now rearrange the integral Q as

_ _  

22 2
• Q (cL;X ,Y) = 

2a n 
_______

iit (n4-1) A 2.A 2 
exp(-u

1 
X - iAY)dA (23)

-• p
where

A = (~;2_ 1/~ 2 )~ ; 0 1 arg A < ii
p p

n = (n + 1)~ ; 0 1 arg < ir/4

Since the integrand of (23) has a pair of poles at ±A , it is more convenient
p

• to expand u
2 around A = A instead of around A = 0, so thatp

2 i (A2—A 2 )n 2 2 2 
~

= 
-1r,~ + ___________ 

(A A~ ) 
+ . (24)2 

2n2 
+ 

68n

Based upon (24) , we may rewrite (23) as

I.’

Q(a ;X ,Y) = 
2a2n2 

~ f u1+i/n r - 1 / n - u
2

/n
2

X iAY)dA + I
iir (n -1) A 2 A 2 exp(-u1 

- 

~~ A 2 
- A 2 exp(-u 1X-iAY ) dA }

p p

= Q0(a;X ,Y) + (25)

where

2ct2n2 ~ exp(-u1X - 
j AY)
n— dA

2c12 exp(-u1X-iXY)
and 

Q0
(ct;X ,Y) 

i~~n
4..l -L u1-ifn

dA= - 

iii (n4
-l )  u

2
-in /n2 ’~

We note that the integrand of Q0 contains a pair of poles at A = ±

whereas the integrand of does not. According to Olsen and Chang [20]

/n ).• this pole will cause a singularity in Q where A~ = 0 (i.e. at ct2 = 1 - 1 -‘2

Since is small compared to Q0 and has a nonsingular~~~~~~~~~~~~~~~~~~~~~~~ :r
~:::1~ 

the first order approxima:ion 

integrand , we
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• 

—1 2 .

Q(ct ;X ,Y) Q0 (c z ;X ,Y)

2a2 2 texp (_u
1
X_ iAY )

= 

~4 
{j [exp(_ u

1
X _ iAY)/u1]dA

+ i/n ~ ~~~~~~~~~~~~~~~~~~~ dA }

= 
2O.~~fl H~~~ Q R )  + 

2ct fl W( a ;X ,Y) (26a)
(n -1) lr (n - l) n

• where W (cz;X ,Y) can be written as

~ [exp(-X(u 1-i1 1))-1)
• W( a ;X ,Y) = exp(-iX/n) {J c x p ( _ i X Y ) d A

• u1
(u

1-
i/n)

+ f exp(-iAY) dA
~~ u~~(u~~- i/ f I )

= exp(_ iX/ n)(W ~ (cZ ;X ,Y) + W
0
(ci;Y)J (26b)

We note that the integrand of Wx has a pair of branch cuts in the

complex A-plane due to the definition of u1 but does not have any poles.

According to Olsen and Chang [20] this results in a pair of branch cuts in the

a-plane due to the motion of the branch points of u1 (at A = ± t )  crossing the

real axis in the A plane. The branch points in the a-plane are at a = ~ 1

and the cut is defined by those points where ~ is a real number.

• The integrand of W0 has, in addition, two poles at A = ± A~,. Again we

know from the work of Olsen and Chan g [20] that these poles can cause branch

cuts in the a-plane whenever they cross the real axis in the A-plane because

of the discontinuity in the residue calculation at ± A~. These branch cuts

in the a-plane are located at a • ± (1 - S2- 1/fl2) where S is any real

number .
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An expression for W0(a;Y) is derived in Appendix B. One form of the

• t • expression is

• W0 (~~;Y) = (2A )cos (A Y)[2,n(~ ) -~~n(l/ui-iA )]-(ir,’A )sin(A y)

+ i t/~~~~~
n) f  sin[A (Y-s) }H~~~~~ s’ds (27)

I where the principal values of the logarithms are chosen . A serie~ expansion

for the finite integral used above is given as

~ (iA ~) m
(iY/2) 

~L in ! [exP (-iA~Y) - ( 1 ) m exP (iA pY ) ] I m (
~Y) (28)

where is expressed in terms of known functions in equations (B.l4),

(8.15), and (8.16).

An expressicm for W
~(c*;X

,Y) is found in Appendix C to be

W
~

(a ;X ,Y) = ~~~~~~ 

~~ 

exp(is/~ )H~~~R(s
2+y2)~ Jds (29)

A series representation of this integral can be shown to be

• •
~

• f (~,X 2/ 2 + Y 2)x 2m
~~

• W
~
(a ;X ,Y) = 

ID Im (iX/~
i) (30)

n=0

• where and ‘a are again expressed in terms of known functions in

Appendix C. We note that such a series does not converge well when Y small

compared to X. In order to find an expression that is good in this region ,

W(cs;X ,Y) can be rearranged as

f) exp(-u1X)cos(AY)W(a ;X ,Y) = J dA (31)
-~~~ ul ul- in

• ‘- • 
• —••---•-• • • • •: - • — ~~~~~

— 
•
—

~~~~ 
-•-
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An expression for (31) is found in Appendix 0 by expand ing the cosine

term into a Taylor series, and integrating this ser ies term by term. The

• resul t is repeated here as

m, 2m
W( a ;X ,Y) = cos (A Y)W(c t ;X ,O) - R (a ;X) (32)

p m= 1 (2m)! m
where

W( a ;X ,O) = exp(-iX/~) (-iii J exp(is/~)H~1~ (Cs)ds0

+ (2/A )[P..n(~)

• Explicit expressions for W(ct;X,O) can be found in Append ix B and wi l l  not be

repeated here. The terms R
~ 

are expressed in terms of known functions in

(D.4), and a series expansion for the finite integral is given as

m~O 

(iX/i)m ’( I ( ~X) (33)

where Im(CX) is again given in (8.14), (B.1S), and (B.16). It should be

noted that the series in (32) converges only if Y<X , so in computing W

we use (32) if X2 > 2Y2, otherwise we use (27), (28), and (30) inserted

into (26b).

In the preceding approximations on the integral Q, it is assumed that

in su ing each of the series enough terms can be included to obtain any

desired accuracy. As evident from (25), the term c~~ is omitted in the

derivation. An upper bound for the error due to neglecting ~~ is found

in Appendix E to be

____  
(l + 6X) (34)

IT 
- 
(n4-l)n2

where 0 (Re ~2 ~ 0)
‘- : 1 -  2~~ 

-,
• - • • 

(Re ~ ) (Re ~ > 0)

_ _ _ _  
-
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From this expression it is apparent that the error is small  if

1n 51X >> 4/iT and 1n 5 1 >> 46 ,’IT . For example say n = 5 . 3 + i . 9 5  and

Real 6 2 < .04 , then the error for h = 0 . 1 A  is less than 3~~ l0~~ and for

h = 0 . 5 A  the error is less than 6x l0 5. We also note that Q is of the

• order 1/n2, so the relative error is of the order 1/n 3. This error

• estimate is again conservative and the results we obtain in the fo l lowing

section w i l l  show that the error is usual ly  less than indicated by these

• estimates. Similar to the evaluation of P(a) we have also included in

Appendix E higher order approximations and their error estimates. It should

be noted the series for P and Q, generated by including the higher order

terms of u2 are only asymptotic, so in general one does not necessarily

improve the accuracy by including more terms.

I
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V. NUMERICAL RESU LTS

We have developed a computer program to compute the roots of the dual-

l ine  modal equation (12) us ing the first order approx imations to the Sommerfeld

integrals P (cx ;X ,Y) and Q(ci ;X ,Y ) .  To test the accuracy of these approxi-

mations we compared the values of the propaga tion constants found using the

f irst order approx imations , to the values found using a numerical integration

of the Sommerfeld integrals. Typical results given in Table 1 show that  the

accuracy of the approximations is quite good (on the order of l0~~ or less),

even for the case of a poorly conducting earth with m l  ~5.4 considered

here. It is assumed that subsequent values obtained using the approximate

modal equation are of the same order of accuracy as the values in Table 1.

In Fig. 2 the roots of the modal equation are plotted for several

values of the wire spacing d, with the wire height h = O . 2A , radius

a = .005A , and refractive index n 5.3 + iO.95. As expected for large

spacings there are monofilar andbifilar modes with propagation constants

close to the values of the single wire modes. As the spacing is decreased

the attenuation of the “quasi TEM” monofilar mode increased until the spacing

is approximately equal to the wire height. After this point the propagation

constant approaches that of a single wire of radius equal to the geometric

mean of a and d. This can be shown directly from the modal equation.

The “earth-attached” monofilar mode is relatively insensitive to the spacing

of the wires. The “quasi TEM” bifilar mode is affected less by the earth

as the spacing decreases, because the fields are concentrated between the

two wires. It should be noted that the “earth-attached” monofilar mode

is less attenuated than the “quasi TEM” bifilar mode for spacings larger than

_ _ _ _ _ _ _  — •—-- ,- ..- -
~~~~~-

I----- -— 
~~~~~~ — —
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p
the wire height ; however for very small spacings the bifilar mode has the

lower attenuation . The fourth mode, an “earth-attached” bifilar mode , can

exist for large wire spacings only. This mode disappears into the improper

Riemann sheet at spacings of 1.5 to 2.0 wavelengths for wire heights of 0.1

to 0.4 wavelengths. The disappearance of this mode is due to the cancelling

of the singular portions of Q(c*;2F1,O) and Q(a ;2H ,D) in the modal equation

(12). Note that it is possible for the “earth-attached” bifilar mode to have

a lower attenuation than the “quasi TEM” bifilar mode.

Figure 3 shows a similar plot of the roots of the modal equation for a

height of h=0.3A . The movement of the monofilar mode is similar to that

of Fig. 2; however the b i f ilar mode wh ich disappear s and the one wh ich

becomes TEM as the spacing is decreased seem to have been interchanged . This

indicates that there must be a degeneracy between the two bifilar modes at

some height between 0 .1SX and 0.3A

• F igure  4 of the bifilar modes is a plot for several heights between

• 0 .I 5X an d 0 . 3 ?~ and for various wire spacings . This f igure shows that the

degeneracy occurs at a wire height between 0.25 X and 0.3 A and at a wire

spacing of about 2.5A . This degeneracy makes it difficult to label the

4 modes as be ing either “earth-attached” or “quasi TEM” , because th ese modes

can be transformed continuously into each other by varying the spacing and

height of the wires .

Fi gure 5 is a plot of the modes for changing he igh ts at several f ixed

.spac ings , This shows that the bifilar mode that exists for small spacings

is transformed into a TEM type mode as the height is increased . One set of

monofjlar modes moves from the branch point at = n/il to a = 1 as the

height is increased . The other set of monofilar modes moves toward the branch

poin t as the hei gh t is increased .
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VI. CONCLUSION

In this report , we have investigated the modes of propagat ion along a

two-wire line paral le l  to and above the surface of a f i n i t e l y  conducting

• earth. Due to interaction between the two wires as well as between the

wires and the earth , the mode s tructure is more complex than tha t  which

would be found in the case of a perfectly conducting ground - a sin~ le

monofilar and a s ingle bifilar mode. Moreover , the existence of modal

degeneration , similar to that discovered in [1] for the single-wire line ,

has been demonstrated.

Systematic analyt ic  approximations have been derived for the Sommerfeld

integrals wh ich en ter into the modal equation , as well  as rigorous error

bounds for them. These expressions allow a great savings in the computer

time requ ired to numerically determine the modal propa gation constants .
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APPENDIX A

In th is  Appendi x the hi gher order terms of P are derived and error

bounds for these are found. An (M+1)th order approximation is obtained

by extract ing the f i r s t M+l te rms in the expansion of u
2 

in (18) from u
2

in (17). P can then be written as

N
P( a ;X;Y )  = E Pk ( a ;X;Y)  + EPM (A .l)

• k=O

whe re P0 is given in ( 20), and for k>O

2i~Pk (a ;X ; Y )  ~_y~a ~;
_2k

CI (a;X ;Y) (A.2)
N k !  ~

and where

Ck 
= (~

) (
~~~~) ( — i ) .(

~~ 
— k) (A.3)

and

Ik
(a ;X; Y) = (I v)~~ J A

2k 
exp(—u

1
X—1AY)dA

( i T ) ~~~{[~.~
2
/~ Y 2 ] k [—~ /3X] 

J
[exp(— u 1x—IA Y ) 1u 1

]dA }

([~~2/~y2]k 4x(x2+Y2)~~ H
(
~~[~(x

2÷Y2)½]} (A.4)

with the use of the identi ty given in (21) . In par t icu lar , for the

2—terms expansion

P
1
(a; X ;Y) - (i/ N

2 ç ) {( çX / R 5)H~~~ (çR) [6Y 2-2x 2-ç2y 2R 2 ] + (x
2/R4)H~~~(~R)[X

2-3y2] }
(A.5)

Con~~ining (A.5) and (19) we obtain the following expression for P ( a ; X ;Y ) :
• 

• 

P(cz ;X;Y) — { —
~j  H
U)(cR)[X

2_Y2+ic ~~~ + 2 (6Y
2
—2X

2
—~

2
Y
2
R
2 )]

N R 2~~R

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (A.6)
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An error bound to the f i r s t  order approximation to P ( c z ; X ; Y )  can

be obtained as follows:

• 

- k~0 l - 

iN 2

• ~~ 
~ flL N

2
( 

exp [-X Re(u1)]dA (A.7)

Let

(0 [Re(~
2) < 0],

• 6 — 1 ’ (A.8)

((Re ~2)½ [Re(? 2) > 0],
• - then it can be shown that

(o (A < 6),

Re (u ) — Re(A2_~
2)½ >1 

~ A2 62)½ (A > 6) .

Now (A
2_62)½ > A — 6 , if A ~ 6. So it follows that

0 (A < d),
• Re(u1) 

~~~A-6 (A > 6) . (A.9)

Now u2 and —iC•~ are in the same quadrant for all real values of A

so 1u2— i (  > . Using these relations, (A.7) becomes

6
f A 2dA+ f A2exp [—X(A—6)]dA ~

• ir~N~~ i
n ~~o 6

— 
4 (2+26x + 62x

2 
+ 63x3/3 ] (A.b O )

I~m
2
~ x3
n

Siatlarly the error in the second orde r approximation to P(ct;X;Y) is

4

I

—.~~~~ 
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k~1I = 1. (_u
2
_::

n 
+ ~~—)exp (-u1

X-iAY)dA I

2 2 exp (—XR c u ) d A
— 

1T( N I o j2~~ (u2—ic ) 
1

• I v JN~~~ J~~~ 

A4dA + f A4exp [-X(A-6)]dA}

- 
2 [24 + 246X + l26 2x2 + 46 3x 3 + + 65x5/5]

— 

11I N
2

1X
5 (A.ll)

By comparing (A .bO) with (A.l l )  , one can see that the error in P
2 2is decreased by adding the second term if In Ix > 6
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APPENDIX B

In this Appendix an expression for W0(
cI;Y) is derived . W

0
(n;Y) as

given in (26) can be manipulated as follows

• ( exp(-iAY)dA
W0(a;Y) 

- J u1(u 1-i./~nT

- 
exp(-IAY)dA . ~ xp (-iAy)dA

• -
~~~ 

p -~~ l ~~p

t = W01(u;Y) 
+ j/~ W~2(cx;y)

W01(ct;’f) is found by deforming the contour into the lower half plane and

evaluating the residue to obtain

.t!:. ex~ (iA~~ ) (B.2)

where O < arg A~~<n  . On the other hand we can rearrange W02 to obtain

~~~~~ • ....L. i fexP(_ixY)dx f exp(-iAy)dA
O2 ’

~~~
’ ‘ 2A 1 u , (A-A ) - J u1 (A+A )

• £ £

.
~f— {I i (cL;’~

) - 1
2(c&;y)1 

(B.3)

• 

. 

The integral I~ can be written as

C~(exp(..iy (A.. A )]-l) ~ dA
110z;

y) — exp (_tA~Y){f u1(A- A~) 
dA 

~) u 1(A_ A~) }

- exp(=iV ) { -i JexP(iSAp) f~~~~sA~ dAds + ~~~ 

~ U:(A 2
4

~~
)

I
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1
1

(a ,Y) = exp(-iA Y) {ii rexp(isx )H
~~~

(Cs)ds + A L U1 A~~ A~~ 
~ 

(B.4)

Similarly 12 can be written as

12 (a ,Y )  = exp(iA Y){~ Cexp(-isA )H~~~(~s)ds -A J 2 (8.5)
I’ ~~~~

_ u (A -A )p

By replacing these expressions for I~ and 12 into (B.3) , we obtain

W02 (cz;y) = (IT/iA ) J sin[A (y~s)JH
W (rs)ds

+ cos (A Y)W 02 (ct ;O) (8.6)

where
t dAW02(a;O) = j  2 2
~ u1 (A 

_A
~)

An expression for W02(cs,0) was found by Olsen and Chang [20] in

which the contour is deformed around the branch cut, and to this integration

was added the residue of the pole at A~ . The resulting expression is

W02 (a;O) (f~/iA ){2[9n(C)—in(1/f~
.- jA )J  — iir} (B.7)

The principal value of the logarithms are chosen . The substitution of
• (B.2), (B.6), and (B.7) into (B.l) then yields

W0b ;y) — (2/A )cos(A Y) [&n(c) - tn(1/ i - iA
n

)] - (n/A )sin(A Y)

+ W3(czY) (8.8)

where

W3(ci;Y ) — (1!/A~ib J sin (A~ (Y-.)JH~
’
~ (c.)d. (8.9)



_ _ _ _ _ _ _ _  - • 

_ 
-

-31-

This can also be wri tten as

W
3

(cz ;Y) = ( 1ri/2A fi) {exp (—i A Y )w 4
(~ ,y , i A )

- exp( iA Y)W 4
(~~,Y ,-iA ) }  (B. lO)

where

t 
W4(C,Y,t) — j exp(ts)H (~s)ds (B.ll)

0

This integral can be evaluated by expanding the exponential into a power

series and integrating the series term by term. The resulting expression

W4 (~~,Y ,t)  = 

m~O 

(tY)~~ I ( ~ Y) (B. 12)

where

• ‘m~~
’
~ 

s~H O Y s)ds (B.13)

These integrals can be found from the recursion relation for m > 2

• 
I (cY ) = (~Y )H~~~(~Y) + ~~~~~~~~~~~~~~~ - (~~l)

2(~Y)
2I 2(~Y)

(B. 14)

I and I~ can be expressed in closed form as

I (~Y) — H~~~(~Y) + (ir/2) [S (~Y)H~
’
~(~y) — S1(~Y)H~~~(~Y)1 (B.1S)

Here S~(x) is the Struve function of order j, and

11(CY) 
- (CY) [H~~~(~y) + 2i/(~~Y)] (3.16)

These results were obtained from Olsen and Chang [20].

I 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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APPENDIX C

In this Appendix an expression for W
~
(ct;X;Y) is derived. W

~
(c1;X;Y)

as given in (26) can be written as

W(~;X;Y) = — f exp( is/â) f [exp (—su
1
—iAY)/u1] dAds

- -iii f exp(is/fl)H~
’
~ [C(8

2+Y2)½]ds (C.l)

In the case that Y — 0, this can be expressed as

W (a;X;O) —iITW
4

(C, X,i/fi)

where an expansion for is given in Appendix B, in equation (B.12) through

(B.l6).

An expansion for W is the region ‘1 large compared to X is found as

follows. Consider the function f(O) defined by f(O) — H~~~(~0½) . This can

be expanded into a Taylor series around as

_ _ _  
in

f ( O ) — Z ,~ (e— e ) (C.2)
m 0  C

The derivatives of f with respect to 0, are given by the recursion formula

for in > 2

f [inJ (0) — —0 [(m—l)f~~~(0) + (c 2/4)~~4k0))

where

f’(O) — (_c/2e½))4~
) (ce~1)

Now, the st~atitution of 0 •
2 

+ and — X2/2 + yields

H(1)[C(.
2+T2?~J — ~~~?~~(X

2/~+Y2) (s 2—X 2/2) (C . 3)

— — —— — ____________________________________
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By inserting (C.3) into (C.l) we have

W( c~;X,Y) = ~~ 
~~~~~~~~~~~~~ 

~
2m+l Im (iX /~

) (C.4)

where

= f(s
2
~ l/2) mexp (ts)ds (C.5)

The integrals Im (t) can be expressed in terms of known functions through

the use of the recursion formula for m�. 2

Im(t) = t
_l
{2

_m
[exp(t) (1)mJ - (2m/t)[2~~

mexp (t)]

— (2m—l )I (t) — (m—l)I (t)]} (C.6)
m-l rn— 2

wi th
10 ( t )  = [exp(t) - l ]/ t

11(t) = (exp (t) - (2/t)[exp (t) - 10(t)}J/t - 10 (t)/2

However for large m and small t this method leads to a large

amount of roundoff error because of the large number of cancellations. A

better method for calculating I
~ 

for large m and small t is to expand

the exponential into a Taylor series around zero to obtain

I~
(t)  = 

k~ l 

~~~k 
K
m ,k 

(C.7)

where 1

Km k  = j  (~ 
2_l,2)m S

kdS

which can be computed from the r:cursion formula for m~~l

m- 1 ,k
k + 2 m + l  (C .8)

_ _ _ _ _ _  5-—
. • ._~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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with

K = l /(k+l)
o,k

We note that 1 (t) is not a function of a or Y, so these can be

computed once for finding several roots with constant n and X.

We also note that the series for W given in (C.4) converges

similarly to the series -
m

m~O X2 + 2 Y 2

This series converges for all Y > 0, even though the rate of convergence

decreases for small Y.

—1 — r ~~ 25-—.a .• •• . • — . .—•—- • - _________________________________________________________________________
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APPENDIX D

In this Appendi x an expression for  W ( c t ; X ; Y )  is found tha t  is good

in the region Y smaller than X. The cosine term in (31) is expanded

into a power series of Y, and this series is integrated term by term

to obtain

~~~

W ( a ;X;Y)  = E , I (ct;X) (D.1• (2m). in
- m 0

where

~~, 2m
A exp(—u 1X)I (a;X) = f 
u1(u1

— i/fi) dA

= 19 2/ax 2÷c
2 ]m 

W(ct;X,0)

• - - where

• 1
exp (—u

1
X)

W(ct;X,O) = d A
• - .1 u~~(u

1
— i / n )

An expression for W( cz ;X,0) is found by setting Y = 0 in (27) and

- (29), and inserting these into (26) to obtain

W( a ;X ,0) - exp(—iX/fl){-i~ f exp( i s/ f i )H W (~ s)ds

0

• + (2/ A ) [ 9.n(ç) — Zn(l/fi—1A )]} (D.2)

A series expansion for the finite integral above is given in Appendix

- B, in equations (B.ll) through (B.16). Let be written as

. I (cz;X) - A 2’
~W ( c * ; X,0) - i~TR (a;x) (D.3)

A recursion relation for R is found to be for in > 1
in -•

- 
-‘5- - -- - -  - •  - - • 

-
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~~

- 
~~~~~~~~~~~~~~~~~~~~~~ 

—



— •---——— •-- - - -  - • • - -- - -— —-*• —- -• • - - —•— -• •-- • 
~
--- --—

-36-

R (a;X) = (A
2 

+ ~
2)R (a;X) + f (ct;X) (D.4)

m p rn—i rn-i

where

= [a2m/~X
2m

J [~/~X - i/fi]H~~~ (C X)

• and

R (ci ;X) = 0

Inserting (D.3) into (D.1) one obtains

W(a;X;Y) = cos(A Y)W(ct;X,0) - u T  
m=l 

~~~~ R (ct;X) (D.5)

We note that for small ~X the function f is asymptotic to

(..l)m(2m):/(X2m)H
(l)

O;X) This implies that the series in (D.5) converges

similarly to the series

2m
• ~~ (Y/X )

m 1  
(2m)(2m—l)

This series converges if and only if Y < X, so we can infer that the series

in (D.5) converges in the region Y<X.
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APPENDIX E

In this Appe ndix higher order terms In the approximation of Q will

be derived and error bounds for the first few terms will be found. As

with P an (M+l)th order approximation to Q is found by extracting the

first M+l terms in the expansion of u
2 

in (24) from u
2 

in (23). Q is

then written as

M
Q(cz;X,Y) = 

~ ~~~~~~~~~ + 
~ M (E.l)

k—0

where is the portion due to the kth term in the expansion of u
2
. Q

0

is given in (25), and for k > 0

—2i a 2n2C ,. 2k
Q (a;X,Y) = - -

~~ 

(
~

) I~ (ct;X,Y) (E.2)k (n —l )~ik ! n

where

Ck = (~
) (
~~ )(-~~). . .(-

~ 
— k)

and

I
k

(a ;X
~

Y) - (iw)~~ f (A
2
-A~~~~ exp (-u1

x_iA Y)dx

= (ir) {(~
2/aX2+fi 2]~~~[-~/axJ 

J~~
exp(_u

1
x_iAY )/u

1
]dA

- { [9 2
/ ax

2+fi 2 ) ~x(x
2+Y2)~~H

W R(x2+y2)½] }

In particular, Q1 is found to be

Q1
(ct;X,Y) — 

—ia2~~x H~~~(~R) (E.3)
• (n —l)n R
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p4 The err or in app roximat ing  Q by Q is given by

2 ~~—in
2
/f~—uIC Q0I = :~I-~~-—-— L A
2
—A
2 

2 exp (—u 1X— iXY)dX I

2 2 ,.~~ exp [—XRe(u
1

)]
I I 

j  2 
- dA (E.4)

— ~ (n —1 ) 
~~~
‘ u2

—in /~ j

If  I m (a 2 ) < 1 ( n 2 ) ,  then both u 2 and —in 2
/~ are in the fourth quadrant

• in the complex plane. This implies that ju
2
—in

2
/ii J ~~ j n / f iJ  . Using the

bounds on Re(u
1
) given in Appendix A, the error bound on Q becomes

2 ,-.4 a n (l+~SX)CQO. — it 4 2 x (E. )
(n — l ) n

where -
(Re!’)’2 (Rt ;

L 
> 0) ,

20 (R~~ < 0).

Simi larly the error in approximating Q by Q+Q1 
is bounded by

2 2

e
Q I <

~~~~~~ I 

2~__
21 

~ 

IA 
~~~~ exp (-XRe(u

1
)]dA (E.6)

1 (n —l)n u
2
—in /nj

Using the same inequalities used in obtaining (E.5), then (E.6)

reduces to

2.,3 [2+2Sx-f6 2x2+6 3x3/3 +1A 21X
2
(Sx+l)]• Ic I .$.~ I ~ 61 3 

(E.7)
(n —l)n X

By comparing (E.7) with (E.5) it is evident that the error is decreased

by including Q1 if (n 2(X2 > i. .
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